Stars & Gas Planets (an explanation)

{© 01/04/19}

This web page is an explanation by Keith Dixon-Roche of gas planets and how they differ from stars and other planets.

Problems With Today's Theory

It is currently claimed that the gas planets comprise mostly gas (hydrogen and helium).
It is also claimed that most of our (Earth's) surface heat is provided by our sun.
These arguments are contradictory. Similar, in fact, to the current argument that a star's energy is from fusion and yet it grows in size with age.

Jupiter is 1.89819E+27kg and has an apparent radius of 6.9911E+07m. Together these create a gas planet with a density of 1326kg/m³; there is no such gas.
Just from looking at the planet, it is obvious that Jupiter's gases are a lot heavier than helium and hydrogen, neither of which generates the colours we see. Jupiter's gases are complex [heavy] molecules. They therefore require temperatures higher than we have here on the surface of Earth to exist as such.
It isn't difficult, therefore, to understand that Jupiter is not simply a ball of hydrogen and helium.

Bearing in mind that the temperature of outer-space is less than 3K, and for matter to exist as a gas it must be hot (>3K):
If Earth's surface heat comes from our sun, then so does Jupiter's. But being so much further from the sun, Jupiter's surface should be colder than Earth's.
The surface of Mercury's dark-side and our moon are both cold, but they are much closer to the sun than Jupiter.
It isn't difficult therefore, to realise that the sun cannot be responsible for most of a planet's heat.

But we also know that Jupiter, Saturn, Uranus and Neptune (all gas planets) must be generating considerably greater heat than here on Earth to sustain their gas clouds.
So where do the gas planets get their heat?

An Explanation That Works

Having resolved planetary spin#, we now know the source of internal heat and magnetic field in orbiting force-centres. It is responsible for generating conflicting forces in an [orbiting] force-centre's core and mantle matter, causing them to counter-rotate; inducing friction, which is responsible for its internal heat, and generating electro-magnetism between their counter-rotating atomic particles.
The greater the mass of a force-centre and its sub-satellites, the more heat and magnetic field the force-centre will generate.
CalQlata has created a simple calculator that accurately predicts the rotary characteristics of all the celestial bodies in our solar system.

Our sun has collected a far more massive sub-satellite population than Jupiter, so it should generate more internal heat and a more intense magnetic field.
Jupiter has collected a far more massive sub-satellite population than Earth, so it should generate more internal heat and a more intense magnetic field.
Earth has collected a greater sub-satellite population than Mercury or Venus, so it should generate more internal heat and a more intense magnetic field.
Mercury's far side is cold. So, we know it has no internal heat and no intense magnetic field.
Venus' [surface] heat is due to the suns radiation (twice that of Earth) heating the water spewed on the planet's surface due to internal spin-friction generated by the conflicting energies induced in its core and mantle matter by the sun's PE (at its core) and the torque induced in its mantle matter by the sun's rotation, but it isn't much. From satellite imagery, it is obvious that Venus generates very little tectonic plate activity.
In fact, most (if not all) of a satellite's surface heat is due to planetary spin; if an active planet lost its moons, it would become cold and lose its magnetic field

Composition

Apart from the great attractor and galactic force-centres, all universal matter comprises satellites, that are classified as; stars, planets, moons or comets (meteorites are just small comets). Stars and Planets are frequently, also force-centres.

A satellite that is not also a force-centre, and vice-versa, will spin, but it will generate insignificant internal frictional heat, it will therefore be cold (dark), emitting very low levels of EME. All of our solar system’s moons and two of its planets are examples of this condition, which applies to all galactic force-centres that are not in orbit.

If a force-centre’s internal spin friction is sufficiently high, its core elements will achieve the neutronic temperature and generate fissionable energy, radiating hundreds of times higher levels of EME; making it ‘bright’.

If a satellite has collected insufficient sub-satellite mass, it will be dark (see Black Bodies below).

The gravitational influence of a force-centre will almost always prevent its closest satellites (e.g. Mercury and Venus) collecting satellites of their own. And the greatest number of sub-satellites will be collected by the satellites furthest from their force-centre's gravitational influence; these will invariably become gas planets.

Stars

A star is a galactic satellite; i.e. a celestial body that orbits a galactic force-centre. It may be cold (dark) or hot (bright).
A dark star has too few sub-satellites (planets) to generate fissionable energy.
A bright star has collected sufficient sub-satellites (planets) to generate fissionable internal energy through planetary spin.
There are no such things as binary stars; only one of which can be a galactic satellite, the other will be a bright galactic sub-satellite that has collected sufficient sub-sub-satellites (moons) to generate fissionable energy.

Stars were probably the only universal satellites during the very early stages of our current universal period. They would not have hosted any sub-satellites (planets) of their own, and were therefore cold; not bright. They comprised similar matter as the galactic force-centres about which they orbited.
Planets and moons will most likely, thereafter, have been created as a result of stellar collisions and later, planetary collisions. These collisions are the source of galactic comets, which are then trapped by stars as sub-satellites (planets) as they pass through galactic solar systems.
As the mass of trapped sub-satellites increases over time, a satellite's (star's) internal frictional heat will rise. Eventually, the heat generated within its core will reach the neutronic temperature adding considerably more heat (and light) through fission.
This event - fission - is what makes stars bright.

Stars are where all universal neutrons are created and then split, releasing fissionable energy, the by-product of which is hydrogen and helium gases that migrate to a star's surface and are responsible for causing them to apparently grow (in size but not mass) with age.
They cannot generate fusion in elements because; a) their elements are too hot, and; b) they have insufficient mass to generate the necessary core pressures.

Because fusion is not possible inside our own star, and because it is very hot, we can postulate that its average density may be similar to that of the lighter elements; e.g. Scandium; ρₛ ≈ 3,000 kg/m³
giving it a body radius of; r ≈ ³√[3.mₛ / 4.π.ρₛ] ≈ 5.4E+08 m
being essentially a gas satellite, what we see of our sun is its gas cloud; its body-mass is considerably smaller.
and a gravitational acceleration at its surface would therefore be; gₛ ≈ G.mH / r ≈ 453 m/s² #
# 46 times greater than at the surface of our own planet

Planets

Planets are galactic sub-satellites and stellar satellites. Whilst they comprise matter similar to the rest of the universe, their internal structure will vary according to the heat induced by their lunar population. The greater the internal [frictional] heat they generate, the more mobile their matter, allowing their heaviest elements to migrate towards the planet's core, where gravitational pull is greatest.
They tend to occupy three groups, two of which are active.
Because planetary satellites (moons) tend to induce significantly more internal friction than the torque induced by the spin in their stellar force-centres, those with no moons are unlikely to generate sufficient internal heat to melt their mantle matter, making them largely inactive and therefore barren.

Planetary bodies work in exactly the same way as a proton-electron pair. The relative rotary motion between the magnetic and electrical charges in their mantle and core atoms generates the planet's protective magnetic field. The greater the internal spin energy, the more intense the magnetic field.
Barren planets will generate almost no magnetic field because they generate negligible relative internal spin, and stars will generate the most. Gas planets, which tend to be large and attract the greatest number of satellite mass, will normally generate a more intense magnetic field than Life-Giving planets.

Barren
Barren planets are those with little or no lunar mass and therefore negligible internal heat. They tend to be those nearest to their stellar force-centre where their force-centre's gravitational attraction is greatest, denying them the opportunity to trap galactic comets.

Life-Giving
Life-giving planets are those that have accumulated sufficient lunar mass to generate the internal [frictional] heat to melt their mantle matter, but insufficient to melt their crusts. Their mantle heat, in combination with the relative internal angular velocities, are together responsible for generating tectonic plate activity in their crusts. These planets tend to occupy the orbits that lie between the barren and gas planets.

Gas
Gas planets are those that have accumulated the greatest lunar mass and therefore generate sufficient internal [frictional] heat to melt their crusts, creating the heavy gas clouds that surround them. They tend to occupy the outer orbits, where their stellar force-centre's gravitational influence is lowest.

Stellar-Planets
Stellar Planets are simply massive gas planets that have accumulated sufficient lunar mass to generate the internal heat required to achieve the neutronic temperature in their core elements. These planets will appear to us as binary stars, however, only one of which is a stellar force-centre (star); the other is a satellite (planet).

Black Bodies

The only naturally bright celestial bodies are those that generate fissionable energy, i.e. their core elements have achieved the neutronic temperature. We call these stars, but it is possible that some gas planets have also achieved this condition.
Without stellar reflection, life-giving and gas planets would otherwise be dark. However, because they are generating considerable internal heat, they radiate low-frequency electro-magnetic energy that can be detected.
Celestial bodies need both a force-centre and satellite(s) to generate internal [frictional] heat and thereby radiate detectable electro-magnetic energy.
Galactic force-centres are dark (cold) because they are not satellites; they are not in orbit.
Moons are dark (cold) because they have no satellites of their own.
A black body is one that does not generate and thereby, radiate detectable electro-magnetic energy.

This subject is covered in much greater detail (including all calculations) in 'The Theory of Spin' and 'The Mathematical Laws of Natural Science'.

Further Reading

You will find further reading on this subject in reference publications(55, 60, 61, 62, 63 & 64)