You will notice that there may be minor discrepancies between some of the constants listed below and publicly available values. This is due to CalQlata's policy of publishing mathematically verifiable values (see reference publications below) in preference to those that are not supported.
For example;
Newton's gravitational constant 'G': This constant, which has remained elusive for more than three-hundred years, has at last been established to CalQlata's satisfaction; formula, value and units. On the other hand, the generally recognised value issued by Codata is not only unsupported, its units are incorrect.
CalQlata has therefore elected to publish the verified value.
The following Table contains the primary constants from which all other constants may be derived; without exception.
Name | Symbol | Value | Units |
electron mass | mₑ | 9.1093897E-31 | kilogram (kg) |
electron charge | e | 1.60217648753E-19 | Coulomb (C) |
neutronic radius {© 01/10/18} | Rₙ | 2.81793795383896E-15 | metre (m) |
neutronic period {© 01/10/18} | tₙ | 5.90596121302193E-23 | second (s) |
static ratio {© 15/07/19} | ξₘ | 1836.15115053207 | |
dynamic ratio {© 15/07/19} | ξᵥ | 1722.0458764934 | |
universal constant {© 15/07/19} | Σ | 3E-91 | m⁶ # |
1 Joule = 1 kilogram.metre / second²
# can also have no units (see Further Reading below)
All constants - including electricity - can be explained using the above four dimensions;
mass (magnetic charge) [kg]; electrical charge [C]; distance [m]; time [s];
and they are all related via the static and/or dynamic ratios.
The following Table contains the constants used to define temperature.
Name | Symbol | Formula | Value | Units |
heat transfer constant {© 15/07/19} | Y | ³√[½.ξᵥ] | 9.51345439232503 | |
temperature constant {© 30/10/22} | K | √[Ṯₓ/Ṯₙ] | 5.72470787930228E-05 | |
Boltzmann's constant | KB | mₑ.c² / Y.Ṯₙ | 1.38065156E-23 | J/K |
neutronic temperature {© 15/07/19} | Ṯₙ | mₑ.c² / Y.KB | 623316124.717178 | K |
basic temperature {© 30/10/22} | Ṯₓ | X.(c / Y.ξₘ)² | 2.04274907568265 | K |
Avogadro's number | NA | 0.001/mₙ | 6.02214129E+23 | /mol |
Temperature is not a genuine property, it is simply a convenient method of measuring the heat (EME) emitted by the innermost proton-electron pairs in any atom.
Ṯ = X.PE / mₑ
where; 'PE' is the potential energy in the proton-electron pair
PE = mₑ.v²
where; 'v' is the orbital velocity of the electron.
The following Table contains the constants that define the properties of the basic atomic particles; electrons and protons and neutrons.
Name | Symbol | Formula | Value | Units |
ultimate density | ρᵤ | mₑ.√[ξₘ/Σ] | 7.1266079635045E+16 | kg/m³ |
unit mass of ultimate density | mᵤ | ρᵤ . 1³ | 7.1266079635045E+16 | kg |
electron volume | Vₑ | mₑ/ρᵤ | 1.27822236702922E-47 | m³ |
electron radius | rₑ | ³√[3.Vₑ/4π] | 1.45046059426276E-16 | m |
electron constant of motion | hₑ | Rₙ.c | 8.4479654849081E-07 | m²/s |
proton mass | mₚ | ξₘ.mₑ | 1.67262163783E-27 | kg |
proton volume | Vₚ | mₚ/ρᵤ | 2.34700946985653E-44 | m³ |
proton radius | rₚ | ³√[3.Vₚ/4π] | 1.77613270336827E-15 | m |
proton constant of motion | hₚ | Rₙ.c / √ξₘ | 1.97150515178454E-08 | m²/s |
proton charge (neutronic) {© 30/10/22} | eₙ | mₚ.RC | 2.94183820093364E-16 | C |
neutron mass {© 15/07/19} | mₙ | mₚ+mₑ | 1.6735325768E-27 | kg |
neutron volume | Vₙ | mₙ/ρᵤ | 2.34828769222356E-44 | m³ |
neutron radius | rₙ | ³√[3.Vₙ/4π] | 1.77645508248591E-15 | m²/s |
The following Table contains general constants that have been developed by scientists of the past.
Name | Symbol | Formula | Value | Units |
electrical energy {© 17/04/18} | Eₑ | Rᵢ.Ṯₙ/RC | 29.2372961438378 | J/C |
velocity-of-light (EME) | c | 2π.Rₙ/tₙ | 2.99792459E+08 | m/s |
Rydberg radius | aₒ | Rₙ.(ξᵥ/4π)² | 5.2917721067E-11 | m |
Planck's constant | h | ½.Rₙ.mₑ.c.ξᵥ | 6.62607174469163E-34 | kg.m²/s |
Planck's constant (mod'd by Dirac) | ħ | h/2π | 1.05457207144921E-34 | kg.m²/s |
Planck's constant (mod'd by KDR) {© 15/07/19} | h' | ½.Rₙ.mₑ.c² | 1.15353857232684E-28 | J.m |
magnetic constant (neutronic) {© 15/07/19} | μₒ | Rₙ.mₑ/e² | 1E-07 | kg.m/C² |
magnetic constant | μ | 4π.μₒ | 1.25663706143592E-06 | kg.m/C² |
permittivity (vacuum) {© 15/07/19} | εₒ | 1 / μₒ.c² | 1.11265004863082E-10 | C² / J.m |
permittivity {© 15/07/19} | ε | 1 / μ.c² | 8.85418775855161E-12 | C² / J.m |
Newton's gravitational constant {© 15/07/19} | G | aₒ.c²/mᵤ | 6.67359232004334E-11 | m³ / s².kg |
Coulomb's constant (electron) {© 15/07/19} | k | 1/ε | 8.98755184732667E+09 | J.m/C² |
Coulomb's constant (proton) {© 15/07/19} | k' | k.ξₘ | 1.65025036649355E+13 | J.m/C² |
coupling ratio {© 15/07/19} | φ | G.mₑ.mₚ / k.e² | 4.40742111792334E-40 | |
Rydberg's wave number {© 15/07/19} | R∞ | 1 / aₒ.ξᵥ | 1.09737269561359E+07 | /m |
Rydberg's energy constant {© 15/07/19} | Rγ | Rₙ/aₒ . ½.mₑ.c² | 2.17987197684936E-18 | J |
wavelength constant (EME){© 16/12/24} | Rᵣ | aᵒ.³√4 | 8.40016460895155E-11 | m |
heat transfer coefficient (velocity) {© 15/07/19} | X | Ṯₙ/c² | 6.9353271647894E-09 | K.s²/m² |
heat transfer coefficient (radial) {© 15/07/19} | Xᴿ | Rₙ.Ṯₙ | 1.75646616508035E-06 | K.m |
structural constant {© 15/07/19} | A | mₚ / Y.Rₙ.Ṯₙ | 3.55212512357916E-08 | kg / K.m² |
kinetic energy (neutronic) {© 17/04/18} | KEₙ | ½.mₑ.c² | 4.09355561131267E-14 | J |
potential energy (neutronic) {© 17/04/18} | PEₙ | -mₑ.c² | 8.18711122262534E-14 | J |
frequency (neutronic) {© 01/10/18} | ƒₙ | 2π/tₙ | 1.69320448260839E+22 | /sJ |
fine structure constant | α | e²/4π | 2.04272942122269E-39 | C² |
The following Table contains the atomic constants that have been derived from Planck's original constants; mass, length & time.
Name | Symbol | Formula | Value | Units |
Planck's mass | m | √[ħ.c / G] | 2.1765500017459E-08 | kg |
Planck's length | λ | √[ħ.G / c³] | 1.61616952231127E-35 | m |
Planck's time | t | √[ħ.G / c⁵] | 5.39096122598358E-44 | s |
Planck's force {© 15/07/19} | F | c⁴/G | 1.21038391820525E+44 | N |
Planck's energy {© 15/07/19} | E | √[ħ.c⁵ / G] | 1.95618559889903E+09 | J |
minimum orbital radius {© 15/07/19} | Rₒ | Rₙ.ξᵥ² | 8.35643156381571E-09 | m |
mean orbital radius {© 15/07/19} | Rₘ | Rₙ.ξᵥ | 4.85261843362263E-12 | m |
neutronic orbital radius {© 15/07/19} | Rₙ | G.mₚ / φ.c² | 2.81793795383896E-15 | m |
minimum orbital velocity {© 15/07/19} | vₒ | c/ξᵥ | 174090.866621084 | m/s |
mean orbital velocity {© 15/07/19} | vₘ | √[c.vₒ] | 7224342.80705004 | m/s |
neutronic orbital velocity {© 15/07/19} | vₙ | c | 2.99792459E+08 | m/s |
minimum temperature {© 15/07/19} | Ṯₒ | X.vₒ² | 210.193328535837 | K |
mean temperature {© 15/07/19} | Ṯₘ | X.vₘ² | 361962.554671561 | K |
neutronic temperature {© 15/07/19} | Ṯₙ | X.vₙ² | 623316124.717178 | K |
The following Table contains the heat and charge capacity constants.
Name | Symbol | Formula | Value | Units |
relative charge capacity {© 15/07/19} | RC | e/mₑ | 1.75881869180545E+11 | C/kg |
charge [emission] capacity {© 15/07/19} | Rc | √[G/k] | 8.61706029887134E-11 | C/kg |
gas constant (ideal) | Rᵢ | KB.NA | 8.24992342031355 | J / K.mole |
gas constant | Rₐ | Rᵢ/RAM | J / K.kg | |
gas constant | R | Rₐ.m | J/K | |
gas constant | Rₚ | cₚ.RAM | J / K.mol | |
heat capacity (constant temperature) | cₜ | mₑ.KB & mₚ.KB | 15156356.3034305 | J / kg.K |
heat capacity (constant volume) | cᵥ | 1.5 . cₜ | 22558018.7907087 | J / kg.K |
heat capacity (constant pressure) | cₚ | 2.5 . cₜ | 37596697.9845145 | J / kg.K |
heat capacity (constant temperature) | Cₜ | mₑ.cₜ | 1.38065156E-23 | J/K |
heat capacity (constant volume) | Cᵥ | mₑ.cᵥ | 2.07097734E-23 | J/K |
heat capacity (constant pressure) | Cₚ | mₑ.cₚ | 3.4516289E-23 | J/K |
charge capacity (constant temperature) | Qₜ | e.qₜ | 1.38065156E-23 | J/K |
charge capacity (constant volume) | Qᵥ | e.qᵥ | 2.05489784024488E-23 | J/K |
charge capacity (constant pressure) | Qₚ | e.qₚ | 3.42482973374147E-23 | J/K |
microstate (constant temperature) | Nₜ | exp(2.5 . Ln(Ṯ) / Rₐ) | ||
microstate (constant volume) | Nᵥ | cᵥ/Rₐ & qᵥ/Rₐ | ||
microstate (constant pressure) | Nₚ | cₚ/Rₐ & qₚ/Rₐ | ||
Faraday's Constant | F | e.NA | 96485.3317942158 | C/mol |
The following Table contains various miscellaneous constants.
Name | Symbol | Formula | Value | Units |
natural logarithm | e | 2.71828182845905 | ||
golden ratio | Φ | 1.61803398874989 | ||
circular ratio | π | C/D # | 3.14159265358979 | |
gravitational acceleration | g | 9.80663139027614 | m/s² |
# C = circumference; D = Diameter
The following two Tables demonstrate the relationship between all of the historic scientific constants if the Primary Constants are set to unity.
The following Table contains the primary constants set to unity at the neutronic condition.
Name | Symbol | Value | Units |
electron mass | mₑ | 1 | kilogram (kg) |
electron charge | e | 1 | Coulomb (C) |
neutronic radius {© 01/10/18} | Rₙ | 1 | metre (m) |
neutronic period {© 01/10/18} | tₙ | 1 | second (s) |
static ratio {© 15/07/19} | ξₘ | 1836.15115053207 | |
dynamic ratio {© 15/07/19} | ξᵥ | 1722.0458764934 | |
universal constant {© 15/07/19} | Σ | 5.99146043769661E-04 | m⁶ # |
# can also have no units (see Further Reading below)
Below are listed the formulas for the above Principal Constants
Name | Symbol | Formula | Value | Units |
fine structure constant | α | 1/4π | 0.0795774715459477 | C² |
velocity-of-light (EME) | c | 2π | 6.28318530717959 | m/s |
Rydberg radius | aₒ | (ξᵥ / 4π)² | 18778.8808461551 | m |
Planck's constant | h | π.ξᵥ | 5409.96667473626 | kg.m²/s |
Planck's constant (mod'd by Dirac) | ħ | ½.ξᵥ | 861.0229382467 | kg.m²/s |
Planck's constant (mod'd by KDR) {© 15/07/19} | h' | 2.π² | 19.7392088021787 | J.m |
magnetic constant (neutronic) {© 15/07/19} | μₒ | Rₙ.mₑ/e² | 1 | kg.m/C² |
magnetic constant | μ | 4π | 12.5663706143592 | kg.m/C² |
Newton's gravitational constant {© 15/07/19} | G | ¼.ξᵥ² . √[∑/ξₘ] | 423.488456181401 | m³ / s².kg |
Coulomb's constant {© 15/07/19} | k | (2π)² | 39.4784176043574 | J.m/C² |
coupling ratio {© 15/07/19} | φ | (ξᵥ / 4π)² . √[∑.ξₘ] | 19696.5548074223 | |
permittivity of a vacuum {© 15/07/19} | εₒ | 1 / 2.(2π)³ | 2.01572090207497E-03 | C² / J.m |
Rydberg's wave number {© 15/07/19} | R∞ | (4π)² / ξᵥ³ | 3.09232816847610E-08 | /m |
Rydberg's energy constant {© 15/07/19} | Rγ | 2.(4π²/ξᵥ)² | 0.00105113872141216 | J |
heat transfer coefficient (velocity) {© 15/07/19} | X | Ṯₙ / (2π)² | 1.57887818849249E+07 | K.s²/m² |
heat transfer coefficient (radial) {© 15/07/19} | XR | Ṯₙ | 6.23316124717178E+08 | K.m |
The above constants have been applied to the properties of all 92 elements and reproduce exactly the same results as those in the Tables above. Therefore, everything in the universe can legitimately be claimed to comprise two particles that are related by two ratios.
You will find further reading on this subject in various reference publications(70 & 73)