Integration of Algebraic and Trigonometric Functions
The following table contains integrated examples of basic algebraic and trigonometric formulas.
Ln means natural logarithm
ꭍ dx |
x |
ꭍ xn.dx |
xn+1 / (n+1) |
ꭍ axn.dx |
a . xn+1 / (n+1) |
ꭍ (axn + b).dx = ꭍ axn.dx + ꭍ b.dx |
a.xn+1 / (n+1) + b.x |
ꭍ (ax + b)n.dx |
(ax+b)n+1 / a(n+1) |
ꭍ dx / (ax + b) = 1/a . ꭍ a.dx / (ax + b) |
1/a . Ln(ax+b) |
ꭍ 1/x . dx |
Ln(x) |
ꭍ 1/(x + b)½ . dx |
2(x+b)½ |
ꭍ 1/(ax + b)½ . dx |
2(ax+b)½ / a |
ꭍ 1/(x² - a²) . dx |
-Acoth(x/a) / a
or
Ln[(x-a)/(x+a)] / 2a |
ꭍ 1/(a² - x²) . dx |
Atanh(x/a) / a
or
Ln[(a+x)/(a-x)] / 2a |
ꭍ 1/(a² + x²) . dx |
Atan(x/a) / a |
ꭍ (x² + a²)½ . dx |
½x(x² + a²)½ + ½a² . Asinh(x/a)
or
½x(x² + a²)½ + ½a² . Ln([x+(x² + a²)½] / a) |
ꭍ ƒ'(x)/ ƒ(x) . dx = Ln( ƒ(x))
|
Note: If the numerator = the differential of the denominator then the inverse of the denominator is the logₑ of the denominator.
So multiply the equation by the differential of the denominator and 'Logₑ' the result |
d(u.v) / dx |
u.v = ꭍ u.dv/dx.dx +ꭍ v.du/dx.dx = ꭍ u.dv +ꭍ v.du
ꭍ u.dv = u.v - ꭍ v.du |
ꭍ ax . dx |
ax . loga(e) |
ꭍ ex . dx |
ex |
ꭍ Sin(x) . dx |
-Cos(x) |
ꭍ Cos(x) . dx |
Sin(x) |
ꭍ Tan(x) . dx |
-Ln(Cos(x)), or Ln(Sec(x)) |
ꭍ Cot(x) . dx |
Ln(Sin(x)) |
ꭍ Sec(x) . dx |
Ln(Tan(¼π + ½x)) |
ꭍ Cosec(x) . dx |
Ln(Tan(½x)) |
ꭍ Sinh(x) . dx |
Cosh(x) |
ꭍ Cosh(x) . dx |
Sinh(x) |
ꭍ Tanh(x) . dx |
Ln(Cosh(x)) |
ꭍ Coth(x) . dx |
Ln(Sinh(x)) |
ꭍ Sin(ax) . dx |
-Cos(ax) / a |
ꭍ Sin(ax + b) . dx |
-Cos(ax + b) / a |
ꭍ Cos(ax) . dx |
Sin(ax) / a |
ꭍ Cos(ax + b) . dx |
Sin(ax + b) / a |
ꭍ Tan(ax) . dx |
Ln(Sec(ax)) / a |
ꭍ Sinh(ax) . dx |
Cosh(ax) / a |
ꭍ Cosh(ax) . dx |
Sinh(ax) / a |
ꭍ Sin(x).Cos(x) . dx |
-¼Cos(2x) |
ꭍ Sec(x).Tan(x) . dx |
Sec(x) |
ꭍ Csc(x).Cot(x) . dx |
-Csc(x) |
ꭍ 1 / (a² - x²)½ . dx |
Asin(x/a), or -Acos(x/a) |
ꭍ 1 / (a² + x²) . dx |
Asec(x/a) / a, or -Acsc(x/a) / a |
ꭍ 1 / x(x² - a²)½ . dx |
Asec(x/a) / a, or -Acsc(x/a) / a |
ꭍ 1 / (x² + a²)½ . dx |
Asinh(x/a), or Ln(x+(x²+a²)½ / a) |
ꭍ 1 / (x² - a²)½ . dx |
Acosh(x/a), or Ln(x+(x²-a²)½ / a) |
ꭍ 1 / (a² - x²) . dx |
Atanh(x/a) / a, or Ln((a+x)/(a-x)) / 2a |
ꭍ 1 / (x² - a²) . dx |
-Acoth(x/a) / a, or Ln((a-x)/(a+x)) / 2a |
ꭍ 1 / x(a² - x²)½ . dx |
-Asech(x/a) / a, or -Ln((a + (a²-x²)½) / x) / a |
ꭍ 1 / x(a² + x²)½ . dx |
-Acsch(x/a) / a, or -Ln((a + (a²+x²)½) / x) / a |
ꭍ Sin²(x) . dx |
½(x - ½.Sin(2x)) |
ꭍ Cos²(x) . dx |
½(x + ½.Sin(2x)) |
ꭍ Tan²(x) . dx |
Tan(x) - x |
ꭍ Csc²(x) .dx |
-Cot(x) |
ꭍ Sec²(x) . dx |
Tan(x) |
ꭍ Cot²(x) . dx |
-(Cot(x) + x) |
ꭍ (x² - a²)½ .dx |
½.x(x²-a²)½ - a².Acosh(x/a)/2, or ½.x(x²-a²)½ - a²(logₑ((x+(x²-a²)½ / a) / 2 |
ꭍ (x² + a²)½ .dx |
½.x(x²+a²)½ + a².Asinh(x/a)/2, or ½x(x²+a²)½ + a²(logₑ((x+(x²+a²)½ / a) / 2 |
ꭍ (a² - x²)½ .dx |
½.a².Asin(x/a) + ½.x(a² - x²)½ |
ꭍ Sin²(ax) |
½x - ¼Sin(2ax)/a |
ꭍ x.Sin(ax).dx |
Sin(ax)/a² - x.Cos(ax)/a |
ꭍ x².Sin(ax) |
-x².Cos(ax)/a + 2.x.Sin(ax)/a² + 2Cos(ax)/a³ |
ꭍ x².Sin²(ax) |
x³/6 - ¼.x².Sin(2ax)/a - ¼x.Cos(2ax)/a² + ⅛Sin(2ax)/a³ |
ꭍ x³.Sin(ax) |
-x³.Cos(ax)/a + 3x².Sin(ax)/a² + 6.x.Cos(ax)/a³ - 6.Sin(ax)/a⁴ |
ꭍ Cos²(ax) |
¼Sin(2ax)/a + ½x |
ꭍ x.Cos(ax).dx |
x.Sin(ax)/a + Cos(ax)/a² |
ꭍ x².Cos(ax) |
x².Sin(ax)/a + 2.x.Cos(ax)/a² - 2.Sin(ax)/a³ |
ꭍ x².Cos²(ax) |
¼.x².Sin(2ax)/a + x³/6 + x.Cos(2ax) / 4a² - ⅛Sin(2ax)/a³ |
ꭍ x³.Cos(ax) |
x³.Sin(ax)/a + 3x².Cos(ax)/a² - 6.x.Sin(ax)/a³ - 6.Cos(ax)/a⁴ |
ꭍ Sin(x).Cos(x) |
-¼.Cos(2x)
|
Worked Examples
The following table contains a number of examples worked through by CalQlata engineers from time to time.
The table may not yet be complete but will be eventually. We are adding new integral workings as we resolve them.
Note: there are a number of different ways to integrate these formulas, we have simply listed the methods we have used.
Typical Integration by Substitution:
Problem: ꭍ √[a + b.x²] . dx
set: m = ꭍša; n = ꭍšb; x = m/n . Tan(θ) {i.e. θ = Atan[x.n/m]}
note: Sec²(θ) = 1+Tan²(θ)
ꭍ (m² + n².x²)⁰ ™⁵ . dx
= ꭍ √[m² + n².m²/n² . Tan²[θ]] . dθ
= ꭍ √[m² + m² . Tan²[θ]] . dθ
= ꭍ √[m².(1 + Tan²[θ])] . dθ
= ꭍ √[m².Sec²[θ]] . dθ
= ꭍ m.Sec[θ] . dθ
= mꭍ Sec[θ] . dθ
= m . Ln(Tan[¼π + ½θ]) {see ꭍ Sec[x].dx above}
substitute back:
for x: m . Ln(Tan[¼π + ½{Atan[x.n/m]}])
for a & b: √a . Ln(Tan[¼π + ½{Atan[x.√b/√a]}])
ꭍ √[a + b.x²] . dx = √a . Ln(Tan(¼π + ½.Atan(x.√[b/a])))
|
ꭍ Sin²(x).dx
Sin²(x) = Sin(x).Sin(x)
= ½(Cos(x-x) - Cos(x+x))
= ½(Cos(0) - Cos(2x))
= ½(1 - Cos(2x))
= ½ - ½Cos(2x)
ꭍ Sin²(x) = ꭍ (½ - ½Cos(2x)).dx
= ꭍ ½.dx - ꭍ ½Cos(2x).dx
= ½ꭍ dx - ½ꭍ Cos(2x).dx
= ½.x - ½.Sin(2x)/2
ꭍ Sin²(x) = ½x - ¼Sin(2x)
|
ꭍ Sin²(ax).dx
Sin²(ax) = Sin(ax).Sin(ax)
= ½(Cos(ax-ax) - Cos(ax+ax))
= ½(Cos(0) - Cos(2ax))
= ½(1 - Cos(2ax))
= ½ - ½Cos(2ax)
ꭍ Sin²(ax) = ꭍ (½ - ½Cos(ax)).dx
= ꭍ ½.dx - ꭍ ½Cos(2ax).dx
= ½ꭍ dx - ½ꭍ Cos(2ax).dx
= ½x - ½Sin(2ax)/2a
ꭍ Sin²(ax) = ½x - ¼Sin(2ax)/a
|
ꭍ x.Sin(ax).dx
(using integration by parts: ꭍ u.dv = uv - ꭍ v.du)
u = x; dv = Sin(ax); du = dx; v = -Cos(ax)/a
ꭍ x.Sin(ax).dx = x.-Cos(ax)/a - ꭍ -Cos(ax)/a.dx
= -x.Cos(ax)/a + 1/aꭍ Cos(ax).dx
= -x.Cos(ax)/a + 1/a.Sin(ax)/a
= -x.Cos(ax)/a + Sin(ax)/a²
ꭍ x.Sin(ax).dx = Sin(ax)/a² - x.Cos(ax)/a
|
ꭍ x².Sin(ax)
(using integration by parts: ꭍ u.dv = uv - ꭍ v.du)
u = x²; dv = Sin(ax); du = 2x.dx; v = -Cos(ax)/a
ꭍ x².Sin(ax) = x².-Cos(ax)/a - ꭍ -Cos(ax)/a . 2x.dx
ꭍ x².Sin(ax) = -x².Cos(ax)/a + 2/aꭍ x.Cos(ax).dx
ꭍ x.Cos(ax).dx
u = x; dv = Cos(ax); du =dx; v = Sin(ax)/a
ꭍ x.Cos(ax).dx = x . Sin(ax)/a - ꭍ Sin(ax)/a . dx
= x . Sin(ax)/a - 1/aꭍ Sin(ax).dx
= x . Sin(ax)/a - 1/a-Cos(ax)/a.dx
= x.Sin(ax)/a + Cos(ax)/a/a
ꭍ x.Cos(ax).dx = x.Sin(ax)/a + Cos(ax)/a²
ꭍ x².Sin(ax) = -x².Cos(ax)/a + 2/a . (x.Sin(ax)/a + Cos(ax)/a²)
= -x².Cos(ax)/a + (2/a . x.Sin(ax)/a + 2/a . Cos(ax)/a²)
= -x².Cos(ax)/a + (2x.Sin(ax)/a² + 2Cos(ax)/a³)
ꭍ x².Sin(ax) = 2Cos(ax)/a³ + 2x.Sin(ax)/a² - x².Cos(ax)/a
|
ꭍ x².Sin²(ax)
Sin²(ax) = Sin(ax).Sin(ax)
= ½(Cos(ax-ax) - Cos(ax+ax))
= ½(Cos(0) - Cos(2ax))
= ½(1 - Cos(2ax))
Sin²(ax) = ½ - ½Cos(2ax)
(using integration by parts: ꭍ u.dv = uv - ꭍ v.du)
u = x²; dv = ½ - ½Cos(2ax); du = 2x.dx; v = ½x - ¼Sin(2ax)/a
ꭍ x².Sin²(ax) = x².(½x - ¼.Sin(2ax)/a) - ꭍ (½x - ¼.Sin(2ax)/a) . 2x.dx
= ½x³ - ¼.x².Sin(2ax)/a - ꭍ (x² - ½.x.Sin(2ax)/a).dx
= ½x³ - ¼.x².Sin(2ax)/a - ꭍ x².dx + ꭍ ½.x.Sin(2ax)/a.dx
= ½x³ - ¼.x².Sin(2ax)/a - ꭍ x².dx + 1 / 2aꭍ x.Sin(2ax).dx
= ½x³ - ¼.x².Sin(2ax)/a - ⅓.x³ + 1 / 2aꭍ x.Sin(2ax).dx
ꭍ x².Sin²(ax) = x³/6 - ¼.x².Sin(2ax)/a + 1 / 2aꭍ x.Sin(2ax).dx
ꭍ x.Sin(2ax).dx
u = x; dv = Sin(2ax); du = dx; v = -Cos(2ax)/2a
ꭍ x.Sin(2ax).dx = -x.Cos(2ax) / 2a - ꭍ -Cos(2ax) / 2a . dx
= -x.Cos(2ax) / 2a + 1 / 2aꭍ Cos(2ax) . dx
= -x.Cos(2ax) / 2a + 1 / 2a.Sin(2ax) / 2a
ꭍ x.Sin(2ax).dx = -x.Cos(2ax) / 2a + Sin(2ax) / 4a²
ꭍ x².Sin²(ax) = x³/6 - ¼.x².Sin(2ax)/a + 1 / 2a . (-x.Cos(2ax) / 2a + Sin(2ax) / 4a²)
= x³/6 - ¼.x².Sin(2ax)/a + (-x.Cos(2ax) / 4a² + ⅛.Sin(2ax)/a³)
ꭍ x².Sin²(ax) = x³/6 - ¼.x².Sin(2ax)/a - ¼x.Cos(2ax)/a² + ⅛.Sin(2ax)/a³
|
ꭍ x³.Sin(ax)
(using integration by parts: ꭍ u.dv = uv - ꭍ v.du)
u = x³; dv = Sin(ax); du = 3.x².dx; v = -Cos(ax)/a
ꭍ x³.Sin(ax) = x³.-Cos(ax)/a - ꭍ -Cos(ax)/a . 3x².dx
ꭍ x³.Sin(ax) = -x³.Cos(ax)/a + 3/aꭍ x².Cos(ax).dx
ꭍ x².Cos(ax).dx
u = x²; dv = Cos(ax); du =2x.dx; v = Sin(ax)/a
ꭍ x².Cos(ax).dx = x².Sin(ax)/a - ꭍ Sin(ax)/a . 2x.dx
= x².Sin(ax)/a - 2/aꭍ Sin(ax) . x.dx
ꭍ x².Cos(ax).dx = x².Sin(ax)/a - 2/aꭍ x.Sin(ax).dx
ꭍ x.Sin(ax).dx
u = x; dv = Sin(ax); du =dx; v = -Cos(ax)/a
ꭍ x.Sin(ax).dx = x . -Cos(ax)/a - ꭍ -Cos(ax)/a . dx
= -x.Cos(ax)/a + 1/aꭍ Cos(ax).dx
= -x.Cos(ax)/a + Sin(ax)/a/a
ꭍ x.Sin(ax).dx = -x.Cos(ax)/a + Sin(ax)/a²
ꭍ x².Cos(ax).dx = x².Sin(ax)/a - 2/a . (-x.Cos(ax)/a + Sin(ax)/a²)
= x².Sin(ax)/a - (2/a.-x.Cos(ax)/a + 2/aSin(ax)/a²)
= x².Sin(ax)/a - (2.-x.Cos(ax)/a² + 2.Sin(ax)/a³)
ꭍ x².Cos(ax).dx = x².Sin(ax)/a + 2.x.Cos(ax)/a² - 2.Sin(ax)/a³
ꭍ x³.Sin(ax) = -x³.Cos(ax)/a + 3/a . (x².Sin(ax)/a + 2.x.Cos(ax)/a² - 2.Sin(ax)/a³)
= -x³.Cos(ax)/a + (3/a . x².Sin(ax)/a + 3/a . 2.x.Cos(ax)/a² - 3/a . 2.Sin(ax)/a³)
= -x³.Cos(ax)/a + (3x².Sin(ax)/a² + 6.x.Cos(ax)/a³ - 6.Sin(ax)/a⁴)
ꭍ x³.Sin(ax) = -x³.Cos(ax)/a + 3x².Sin(ax)/a² + 6.x.Cos(ax)/a³ - 6.Sin(ax)/a⁴
|
ꭍ Cos²(x).dx
Cos²(x) = Cos(x).Cos(x)
= ½(Cos(x+x) + Cos(x-x))
= ½(Cos(2x) + Cos(0))
= ½(Cos(2x) + 1)
= ½Cos(2x) + ½
ꭍ Cos²(x) = ꭍ (½Cos(2x) + ½).dx
= ꭍ ½Cos(2x).dx + ꭍ ½.dx
= ½ꭍ Cos(2x).dx + ½ꭍ dx
= ½.Sin(2x)/2 + ½.x
ꭍ Cos²(x) = ¼Sin(2x) + ½x
|
ꭍ Cos²(ax).dx
Cos²(ax) = Cos(ax).Cos(ax)
= ½(Cos(ax+ax) + Cos(ax-ax))
= ½(Cos(2ax) + Cos(0))
= ½(Cos(2ax) + 1)
= ½Cos(2ax) + ½
ꭍ Cos²(ax) = ꭍ (½Cos(ax) + ½).dx
= ꭍ ½Cos(2ax).dx + ꭍ ½.dx
= ½ꭍ Cos(2ax).dx + ½ꭍ dx
= ½Sin(2ax)/2a + ½x
ꭍ Cos²(ax) = ¼Sin(2ax)/a + ½x
|
ꭍ x.Cos(ax).dx
(using integration by parts: ꭍ u.dv = uv - ꭍ v.du)
u = x; dv = Cos(ax); du = dx; v = Sin(ax)/a
ꭍ x.Cos(ax).dx = x.Sin(ax)/a - ꭍ Sin(ax)/a.dx
= x.Sin(ax)/a - 1/aꭍ Sin(ax).dx
= x.Sin(ax)/a - 1/a.-Cos(ax)/a
= x.Sin(ax)/a + Cos(ax)/a²
ꭍ x.Cos(ax).dx = x.Sin(ax)/a + Cos(ax)/a²
|
ꭍ x².Cos(ax)
(using integration by parts: ꭍ u.dv = uv - ꭍ v.du)
u = x²; dv = Cos(ax); du =2x.dx; v = Sin(ax)/a
ꭍ x².Cos(ax) = x².Sin(ax)/a - ꭍ Sin(ax)/a . 2x.dx
ꭍ x².Cos(ax) = x².Sin(ax)/a - 2/aꭍ x.Sin(ax).dx
ꭍ x.Sin(ax).dx
u = x; dv = Sin(ax); du =dx; v = -Cos(ax)/a
= x . -Cos(ax)/a - ꭍ -Cos(ax)/a . dx
= -x.Cos(ax)/a + 1/aꭍ Cos(ax).dx
= -x.Cos(ax)/a + 1/a.Sin(ax)/a
ꭍ x.Sin(ax).dx = -x.Cos(ax)/a + Sin(ax)/a²
ꭍ x².Cos(ax) = x².Sin(ax)/a - 2/a . (-x.Cos(ax)/a + Sin(ax)/a²)
= x².Sin(ax)/a - (2/a.-x.Cos(ax)/a + 2/a.Sin(ax)/a²)
= x².Sin(ax)/a - (2.-x.Cos(ax)/a² + 2.Sin(ax)/a³)
ꭍ x².Cos(ax) = x².Sin(ax)/a + 2.x.Cos(ax)/a² - 2.Sin(ax)/a³
|
ꭍ x².Cos²(ax)
Cos²(ax) = Cos(ax).Cos(ax)
= ½(Cos(ax+ax) + Cos(ax-ax))
= ½(Cos(2ax) + Cos(0))
= ½(Cos(2ax) + 1)
Cos²(ax) = ½Cos(2ax) + ½
(using integration by parts: ꭍ u.dv = uv - ꭍ v.du)
u = x²; dv = ½Cos(2ax) + ½; du = 2x.dx; v = ¼Sin(2ax)/a + ½x
ꭍ x².Cos²(ax) = x².(¼.Sin(2ax)/a + ½x) - ꭍ (¼Sin(2ax)/a + ½x) . 2x.dx
= ¼.x².Sin(2ax)/a + ½x³ - ꭍ (½.x.Sin(2ax)/a + x²).dx
= ¼.x².Sin(2ax)/a + ½x³ - ꭍ ½.x.Sin(2ax)/a.dx - ꭍ x².dx
= ¼.x².Sin(2ax)/a + ½x³ - ꭍ x².dx - 1 / 2aꭍ x.Sin(2ax).dx
= ¼.x².Sin(2ax)/a + ½x³ - ⅓.x³ - 1 / 2aꭍ x.Sin(2ax).dx
ꭍ x².Cos²(ax) = ¼.x².Sin(2ax)/a + x³/6 - 1 / 2aꭍ x.Sin(2ax).dx
ꭍ x.Sin(2ax).dx
u = x; dv = Sin(2ax); du = dx; v = -Cos(2ax) / 2a
ꭍ x.Sin(2ax).dx = -x.Cos(2ax) / 2a - ꭍ -Cos(2ax) / 2a . dx
= -x.Cos(2ax) / 2a + 1 / 2aꭍ Cos(2ax) . dx
= -x.Cos(2ax) / 2a + 1 / 2a.Sin(2ax) / 2a . dx
ꭍ x.Sin(2ax).dx = -x.Cos(2ax) / 2a + Sin(2ax) / 4a²
ꭍ x².Cos²(ax) = ¼.x².Sin(2ax)/a + x³/6 - 1 / 2a . (-x.Cos(2ax) / 2a + Sin(2ax) / 4a²)
= ¼.x².Sin(2ax)/a + x³/6 - (-x.Cos(2ax) / 4a² + Sin(2ax) / 8a³)
ꭍ x².Cos²(ax) = ¼.x².Sin(2ax)/a + x³/6 + x.Cos(2ax) / 4a² - ⅛.Sin(2ax)/a³
|
ꭍ x³.Cos(ax)
(using integration by parts: ꭍ u.dv = uv - ꭍ v.du)
u = x³; dv = Cos(ax); du =3x².dx; v = Sin(ax)/a
ꭍ x³.Cos(ax) = x³.Sin(ax)/a - ꭍ Sin(ax)/a . 3x².dx
ꭍ x³.Cos(ax) = x³.Sin(ax)/a - 3/aꭍ x².Sin(ax).dx
ꭍ x².Sin(ax).dx
u = x²; dv = Sin(ax); du =2x.dx; v = -Cos(ax)/a
ꭍ x².Sin(ax).dx = x².-Cos(ax)/a - ꭍ -Cos(ax)/a . 2x.dx
= -x².Cos(ax)/a + 2/aꭍ Cos(ax) . x.dx
ꭍ x².Sin(ax).dx = -x².Cos(ax)/a + 2/aꭍ x.Cos(ax).dx
ꭍ x.Cos(ax).dx
u = x; dv = Cos(ax); du =dx; v = Sin(ax)/a
ꭍ x.Cos(ax).dx = x . Sin(ax)/a - ꭍ Sin(ax)/a . dx
= x . Sin(ax)/a - 1/aꭍ Sin(ax).dx
= x.Sin(ax)/a + Cos(ax)/a/a
ꭍ x.Cos(ax).dx = x.Sin(ax)/a + Cos(ax)/a²
ꭍ x².Sin(ax).dx = -x².Cos(ax)/a + 2/a . (x.Sin(ax)/a + Cos(ax)/a²)
= -x².Cos(ax)/a + (2/a . x.Sin(ax)/a + 2/a . Cos(ax)/a²)
= -x².Cos(ax)/a + (2.x.Sin(ax)/a² + 2.Cos(ax)/a³)
ꭍ x².Sin(ax).dx = -x².Cos(ax)/a + 2.x.Sin(ax)/a² + 2.Cos(ax)/a³
ꭍ x³.Cos(ax) = x³.Sin(ax)/a - 3/a . (-x².Cos(ax)/a + 2.x.Sin(ax)/a² + 2.Cos(ax)/a³)
= x³.Sin(ax)/a - (3/a . -x².Cos(ax)/a + 3/a . 2.x.Sin(ax)/a² + 3/a . 2.Cos(ax)/a³)
= x³.Sin(ax)/a - (-3x².Cos(ax)/a² + 6.x.Sin(ax)/a³ + 6.Cos(ax)/a⁴)
ꭍ x³.Cos(ax) = x³.Sin(ax)/a + 3x².Cos(ax)/a² - 6.x.Sin(ax)/a³ - 6.Cos(ax)/a⁴
|
ꭍ Sin(x).Cos(x).dx
Sin(x).Cos(x) = ½(Sin(x+x) + Sin(x-x))
= ½(Sin(2x) + Sin(0))
= ½(Sin(2x) + 0)
= ½Sin(2x)
ꭍ Sin(x).Cos(x) = ꭍ ½Sin(2x).dx
= ½ꭍ Sin(2x).dx
= ½.-Cos(2x)/2
ꭍ Sin(x).Cos(x) = -¼.Cos(2x)
|
ꭍ Tan²(x).dx
Tan²(x) = Sec²(x) - 1
ꭍ Tan²(x) = ꭍ (Sec²(x) - 1).dx
= ꭍ Sec²(x).dx - ꭍ dx
ꭍ Tan²(x) = Tan(x) - x
|
Colour Coding is provided in the above table to assist with the flow/sequencing of some of the more complex calculations.
Further Reading
You will find further reading on this subject in reference publications(19)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -