• Second moment of area moment of inertiaCalculate the second moment of area and radius of gyration of common shapes about weak and strong axes
  • Cubic orientation of primary and shear stresses and principal stress cosine rotationCombine primary and shear stresses into equivalent and principal stresses & their cosines
  • Nucleus and electron shells of atomic elementFind, sort and reorganise the properties of nature's atomic elements with active periodic table
  • Formulas included in Engineering PrinciplesCalculate unknowns in principle engineering formulas: stress, moments, power, energy, capstans, fluids, etc.
  • Properties of a triangle with inscribed and circumscribed circlesCalculate the properties of triangles and triangular configurations including inscribed and circumscribed circles
Area Moment calculation1 Combined Stress calculation2 Elements calculation3 Engineering Principles calculation4 Trigonometry calculation5
Available Now 2ᴺᴰ Moment of Area 2ᴺᴰ Moment of Area+ Added Mass & Drag Areas & Volumes Balancing (rotary) Beam Strength Beam Strength+ Bearings (low friction) Bearings (plain) Bending Moments BiMetallic Strip Buoyancy Carbon Steel Catenary Catenary+ Cathodic Protection Centrifugal Force Colebrook & Fanning Column Buckling Combined Stress Co-ordinates Copper Alloys Electrical Current Elliptical Curves Engineering Basics Explosions Fans Fatigue Flange Gaskets Flanges Floors Fluid Forces Fluid Numbers Friction Galvanic Corrosion Gears Hardness Conversion HPHT Flexible Pipe Lift Rigging Logs & Trig Machining Tolerances Metal Properties Mode Shapes Ocean Waves Padeyes Partial Pressures Piling Pipe Flow Pipe Flow+ Pipe Strength Plastic Stress in Beams Plate Deflection Pressure Vessels Reel Capacity Resolution of Forces Screw Thread Machining Screw Threads Shafts Shock Loads Spring Coefficients Spring Strength Steel Beam Sizes Stress Concentration Table of the Elements Thermal Conductivity Trigonometry UniQon Upheaval Buckling Velocity & Acceleration Vessel Motions Vessel RAOs Vibration Damping Vortex Shedding Walls, Barriers & Tanks Weight Lifting Welding Wire Rope

Home » All Programs

 Checkout
Calculator Description
Vortex Shedding Calculator v1
The vortex shedding calculator determines whether or not a beam will vibrate at its natural frequency in specified conditions in two modes

Vortex Shedding

Subject

Vortex shedding occurs when a structural element is exposed to external flowing or regularly pulsating fluids that generate cyclic conditions which coincide with its natural frequency. A couple of excellent examples of what can go wrong if this issue is not properly addressed are the Tacoma narrows bridge (1940) and the London Thames Millennium bridge (2002) where wind effects or other induced vibrations matched the bridge span’s natural frequency. If the above bridges had been constructed differently, they would probably not have suffered as they did.

Vortex shedding is a genuine and serious potential problem that can significantly decrease fatigue life or substantially increase material stresses. The vortex shedding calculator gives you the ability to predict the likelihood of this occurring in your structural element and under your specified conditions.

Calculator

The vortex shedding calculator determines whether or not a beam will vibrate at its natural frequency in specified conditions.

The vortex shedding calculator applies equally well to any sectional shape so long as the correct properties including added mass and drag coefficients are applied to the input data.

Given that no more than two mode types will occur between two supports in any multi-mode vibration (see CalQlata’s Mode Shapes calculator), Vortex Shedding allows you to calculate the likelihood of vortex shedding in two modes at the same time.

Whilst Vortex Shedding is a stand-alone calculator, it has been designed to work with CalQlata's Waves and Mode Shapes calculators.

For help using this calculator see Technical Help

Vortex Shedding Calculator - Options

For all of the calculation options, the input and output data are as follows:

You enter: and the vortex shedding calculator will provide:
  • Mass per unit length (including added mass)
  • Fluid density
  • Fluid viscosity
  • Constant velocity
  • Variable fluid velocities and accelerations#
  • Dimension (diameter or depth)
  • Mode wavelength
  • Mode static deflection
  • Mode natural frequency
  • Mode acceleration
  • Damping ratio
  • Drag coefficient
  • Acceleration due to gravity
  • Special end Conditions
  • Reynolds number
  • Strouhal number
  • Keulegan-Carpenter number
  • Vortex frequency
  • Lift coefficient
  • Vortex lift force @ ƒₒ
  • Drag force
  • Available cycling force
  • Dynamic amplitude
  • Mode reduced velocity
  • Mode vortex shedding (in-line)
  • Mode vortex shedding (cross-flow)
  • Cycling force to achieve @ ƒn
  • Maximum expected bending moment
  • Stability parameter

# these values are only used for Oscillating Flow

Vortex Shedding includes a data import facility from CalQlata's Waves and Mode Shapes calculators

Check minimum system requirements

 
 
Price: 25.00

 
« Previous | Next »

We accept the following payment methods

Credit Cards

      Go to our store
CalQlata™ Copyright ©2011-2016 CalQlata info@calqlata.com Site Map Terms of website use Our Store