Differential Function, Product & Quotient Rules
The following table contains some rules and worked examples for differentiation.
The Rules
y = a |
dy/dx = 0 Because 'a' is a constant, the slope of the equation (dy/dx) must be zero |
y = a.xn |
dy/dx = n.a.xn-1 |
y = a.xℓ + b.xm + c.xn |
dy/dx = ℓ.a.xℓ-1 + m.b.xm-1 + n.c.xn-1 |
y = u + v |
dy/dx = du/dx + dv/dx |
Function of a Function (algebraic) |
y = (axn - b)m u = axn - b > du/dx = a.n.xn-1 y = um > dy/du = m.um-1 dy/dx = dy/du . du/dx
|
Function of a Function (trigonometric) |
y = Sin²(a + bx²)
y = u² > dy/du = 2u
u = Sin(v) > du/dv = Cos(v)
v = a + bx² > dv/dx = 2bx
dy/dx = dy/du . du/dv . dv/dx
dy/dx = 2u . Cos(v) . 2.bx = 2.Sin(v) . Cos(a + bx²) . 2bx
dy/dx = 2.Sin(a + bx²) . Cos(a + bx²) . 2bx
dy/dx = 2bx . Sin(2(a + bx²))
|
Product Rule |
y = u.v dy/dx = u.dv/dx + v.du/dx |
Product Rule (one product) |
y = (3x² + 2x).( 6x - 2x³)
u = 3x² + 2x
v = 6x - 2x³
y = u.v
dy/dx = u.dv/dx + v.du/dx
dy/dx = d(3x² + 2x).(6x - 2x³)/dx + d(6x - 2x³).(3x² + 2x)/dx
dy/dx = (6x + 2).(6x - 2x³) + (6 - 6x).(3x² + 2x)
dy/dx = (36x² - 12x⁴ + 12x - 4x³) + (18x² + 12x - 18x³ - 12 x2)
dy/dx = -12x⁴ - 4x³ - 18x³ + 36x² + 18x² - 12x2 + 12x + 12x
dy/dx = -12x⁴ - 22x³ + 42x² +24x
|
Product Rule (two products) |
y = (1 + x²).(2 - x²).(3 + x²)
u = 1 + x²
v = 2 - x²
w = 3 + x²
y = u.v.w
dy/dx = u.v.dw/dx + u.w.dv/dx + v.w.du/dx
dy = (1 + x²).(2 - x²).d(3 + x²)/dx + (1 + x²).(3 + x²).d(2 - x²)/dx + (2 - x²).(3 + x²).d(1 + x²)/dx
dy/dx = (1 + x²).(2 - x²).(2x) + (1 + x²).(3 + x²).(2x) + (2 - x²).(3 + x²).(2x)
dy/dx = 2x.(2 - x⁴ + 2x² - x²) + 2x.(3 + x⁴ + 3x² + x²) + 2x.(6 - x⁴ + 2x² - 3x²)
dy/dx = (4x - 2x⁵ + 4x³ - 2x³) + (6x + 2x⁵ + 6x³ + 2x³) + (12x - 2x⁵ + 4x³ - 6x³)
dy/dx = 4x + 6x + 12x + 4x³ - 2x³ - 6x³ + 2x³ + 4x³ + 6x³ - 2x⁵ + 2x⁵ - 2x⁵
dy/dx = 22x + 8x³ - 2x⁵
|
Quotient Rule |
y = u/v
dy/dx = (v.du/dx - u.dv/dx) / v²
y = 3x / (x - 1)
u = 3x
v = x - 1
dy/dx = [3(x-1) - 3x(1)] / (x² - 2x + 1)
dy/dx = (3x - 3 - 3x) / (x² - 2x + 1)
dy/dx = -3 / (x² - 2x + 1)
|
Partial Differentiation |
2.x³ - 3.xy + 5.x - 4.y² + 3 = 0 6.x², 3.x.y € + 3.y, 5, 8.y.y € , 0
6.x² - [3.x.y' + 3.y] + 5 - 8.y.y' + 0 = 0
6.x² - 3.x.y' - 3.y + 5 - 8.y.y' + 0 = 0
3.x.y' + 8.y.y' = 6.x² - 3.y + 5
y' (3.x + 8.y) = 6.x² - 3.y + 5
y' = (6.x² - 3.y + 5) / (3.x + 8.y)
|
Further Reading
You will find further reading on this subject in reference publications(19)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -