• The solution to Newton's GEXACT VALUE & FORMULA
  • The theory controlling planetary spinTHE MATHEMATICAL LAW
  • The pressure at the centre of a massEARTH'S CORE PRESSURE (calculation procedure)
  • Proof of the non-exitence of Dark MatterDOES NOT EXIST
  • The atom as Newton and Coulomb describe itNO NEED FOR A UNIFICATION THEORY
The solution to Newton's G1 The theory controlling planetary spin2 Pressure at the centre of the Earth3 Proof of the non-exitence of Dark Matter4 The atom as Newton describes it5
access to the technical calculator
Technical Help 2ᴺᴰ Moment of Area 2ᴺᴰ Moment of Area+ Added Mass & Drag Areas & Volumes Balancing (rotary) Beam Strength Beam Strength+ Bearings (low friction) Bearings (plain) Bending Moments BiMetallic Strip Buoyancy Carbon Steel Catenary Catenary+ Cathodic Protection Centrifugal Force Colebrook & Fanning Column Buckling Combined Stress Co-ordinates Copper Alloys Electrical Current Elliptical Curves Engineering Basics Explosions Fans Fatigue Flange Gaskets Flanges Floors Fluid Forces Fluid Numbers Friction Galvanic Corrosion Gears Hardness Conversion HPHT Flexible Pipe Lift Rigging Logs & Trig Machining Tolerances Metal Properties Mode Shapes Ocean Waves Optical Lenses Padeyes Partial Pressures Piling Pipe Flow Pipe Flow+ Pipe Strength Plastic Stress in Beams Plate Deflection Pressure Vessels Reel Capacity Resolution of Forces Screw Thread Machining Screw Threads Shafts Shock Loads Spring Strength Spring Coefficients Steel Beam Sizes Stress Concentration Table of the Elements Thermal Conductivity Trigonometry UniQon Upheaval Buckling Velocity & Acceleration Vessel Motions Vessel RAOs Vibration Damping Vortex Shedding Walls, Barriers & Tanks Weight Lifting Welding Wire Rope
The resolution of two forces

Fig 1. Resolution of Forces

Resolution of Forces Calculator
(equivalent single force)

The "resolution of forces" is the determination of a single equivalent force applied at a given point that results in exactly the same loading condition as a collection of individual forces applied at the same point. Fig 1 shows two typical individual forces; 'F₀' & 'F₁' and the resolved (equivalent) force 'F', can be established using triangulation.

Whilst the resolution of just two forces is relatively straightforward, the problem becomes tedious and prone to error when more than two forces are involved and/or they are applied in 3-D (Fig 2).

Moreover, the potential error problem can be exacerbated with complex co-ordinate systems both from the point of view of translation into useable input data and understanding of the output results. For example, a Cartesian co-ordinate system based upon x,y,z components for each force, would complicate the generation of input data increasing the likelihood of errors. CalQlata prefers to use a modified version of the Polar co-ordinate system (see Co-ordinate System below), thereby reducing input angles to just two (α & β) and/or simplifying input data estimation if an estimate is acceptable.

The resolution of multiple forces

Fig 2. Resolution of Forces

Where the forces to be resolved do not all pass through exactly the same point, whilst the same equivalent force will apply, bending moments, shear forces and torsion will occur across these forces at the anchor. In such an event, separate calculations will be required to establish resultant local stresses at the anchor.

Resolution of Forces Calculator - Technical Help

Co-ordinate System

Some 3-D co-ordinate systems can be confusing and/or complicated, increasing the possibility of errors. As such, this resolution of forces calculator does not allow for 360° of rotation for every individual force in every direction. The co-ordinate system used by this calculator allows you to enter an angle in the horizontal plane about a vertical axis (α) between -180° and 180° and the angle in the vertical plane (β) between -90° and 90°, giving you full 360° capability in all directions with only two inputs and minimal complexity (Fig 3).

The co-ordinate system in the resolution of forces calculator

Fig 3. Co-ordinate System

Input Data

A typical example for the orientation of a force (α & β) is shown in Fig 4 where you first orientate each input force (F) in the horizontal plane (α, -ve example shown) and then orientate it vertically above or below the horizontal plane (β, +ve example shown).

Output Data

The output data (results) are provided in exactly the same co-ordinate system.

If the angle in the horizontal plane (α) is negative, the force is rotated in a clockwise direction (looking down from above). If it is positive, the force is rotated in an anti-clockwise direction.

If the angle in the vertical plane (β) is negative, the force is rotated downwards. If it is positive, the force is rotated upwards.

Inputing data in the resolution of forces calculator

Fig 4. Entering Data

Accuracy

The output data is as accurate as the input data.

If you enter forces that are equal and opposite, i.e. they cancel each other out the resolution of forces calculator may show a result as "Infinity" along with an error message: "Result is zero or division by zero". Infinity is an automatic processor response and does not mean that you have generated an infinite equivalent force it simply means that the calculation encountered a division by zero.

Further Reading

You will find further reading on this subject in reference publications(2, 3 & 4)

      Go to the calculator
CalQlata™ Copyright ©2011-2017 CalQlata info@calqlata.com Site Map Terms of website use Our Store