• Clean, free, unlimited energy for allCLEAN, FREE, UNLIMITED ENERGY
  • Earth's renewable energyEARTH'S RENEWABLE ENERGY
  • Eliminate batteries, wind turbines and solar panelsELIMINATE BATTERIES, WIND TURBINES & SOLAR PANELS
  • 100% perfect medicines in minutesPERFECT MEDICINES IN MINUTES
  • Eliminate surface skin-frictionELIMINATE SKIN FRICTION
Clean, free, unlimited energy1 Earth's renewable energy2 Eliminate batteries, wind turbines and solar panels3 100% perfect medicines in minutes4 Eliminate surface skin-friction5
Useful Stuff Algebra Trig Functions Calculus Max-Min Differentiation Rules Differentiation Trig Differentiation Logs Integration Methods Standard Integrals Stiffness & Capacity Mohr's Circle Earth's Atmosphere Earth's Properties Stars & Planets Laws of Motion Solar System Orbits Planetary Spin Core Pressure Earth's Magnetic Field Dark Matter? The Big Bang Rydberg Atom Planck Atom Classical Atom Newton Atom The Atom Newton's 'G' Coulomb's 'k' The Neutron E=mc² Gravity is Magnetism Relativity is Dead Quantum Theory is Dead Stars & The Gas Planets Artificial Satellites Brakes and Tyres Vehicle Impacts Speeding vs Safety Surface Finish Pressure Classes Hardness Conversion Energy Electro-Magnetic Spectra Thermodynamics Steam (properties) Heat Work Energy Power Constants

Alternative Expressions for Compound Trigonometric Functions

Sin = O/H & Csc = 1/Sin
Cos = A/H & Sec = 1/Cos
Tan = O/A & Cot = 1/Tan
Where: O = opposite, A = adjacent & H = Hypotenuse

The following table contains equivalent or alternative ways to express trigonometric compound formulas.

Sin(x) = x - x³/3! + x⁵/5! - x⁷/7! + x⁹/9! - x¹¹/11! + x¹³/13! - x¹⁵/15! +… etc.

Cos(x) = 1 - x²/2! + x⁴/4! - x⁶/6! + x⁸/8! - x¹⁰/10! + x¹²/12! - x¹⁴/14! +… etc.

Sinh(x) = x¹/1 + x³/3 + x⁵/5 + x⁷/7 + x⁹/9 + x¹¹/11 + x¹³/13 + ....

Cosh(x) = 1 + x²/2 + x⁴/4 + x⁶/6 + x⁸/8 + x¹⁰/10 + x¹²/12 + x¹⁴/14 + ....

Cosine Rule: A² = B² + C² – 2.B.C.Cos(a)

Sine Rule: A/Sin(a) = B/Sin(b) = C/Sin(c)

Cos²(x) = 1 – Sin²(x)

Sin²(x) = 1 – Cos²(x)

Tan²(x) = Sec²(x) - 1

Cos²(x) + Sin²(x) = 1

Tan(π/3) = √3

Cos(2x) = Cos²(x) – Sin²(x) = 1 – 2.Sin²(x) = 2.Cos²(x) – 1

Sin(x/2) = ±(½(1 – Cos(x)))½

Sin(x) = 2.Sin(x/2).Cos(x/2)

Sin(2x) = 2.Cos(x).Sin(x)

½Sin(2x) = Sin(x).Cos(x)

Tan(x/2) = Sin(x)/(1+Cos(x)) = (1-Cos(x))/Sin(x)

Tan(x) = Sin(x) / Cos(x)

Tan²(x) = Sin²(x) / Cos²(x)

Tan(2x) = 2.Tan(x) / (1 – Tan²(x))

Cos(x/2) = ±(½(1 + Cos(x)))½

Cos(x) = (1 – Sin²(x))½

Sin(x) = (1 – Cos²(x))½

Tan(x) = Sin(x) / (1 – Sin²(x))½

1/Cos²(x) = 1 + tan²(x)

Sin(x).Cos(x) = ½.Sin(2.x)

Sin(x).Sin(y) = ½(Cos(x-y) - Cos(x+y))

Sin(x).Cos(y) = ½(Sin(x+y) + Sin(x-y))

Cos(x).Sin(y) = ½(Sin(x+y) - Sin(x-y))

Cos(x).Cos(y) = ½(Cos(x+y) + Cos(x-y))

Sin(x + y) = Sin(x).Cos(y) + Cos(x).Sin(y)

Cos(x + y) = Cos(x).Cos(y) – Sin(x).Sin(y)

Tan(x + y) = Tan(x)+Tan(y) / (1 – Tan(x).Tan(y))

Sin(x – y) = Sin(x).Cos(y) – Cos(x).Sin(y)

Cos(x – y) = Cos(x).Cos(y) + Sin(x).Sin(y)

Tan(x – y) = Tan(x) – Tan(y) / (1 + Tan(x).Tan(y))

Sin(x) + Sin(y) = 2.Sin(½(x + y)).Cos(½(x – y))

Cos(x) + Cos(y) = 2.Cos(½(x + y)).Cos(½(x – y))

Tan(x) + Tan(y) = Sin(x + y) / Cos(x).Cos(y)

Sin(x) – Sin(y) = 2.Cos(½(x + y)).Sin(½(x – y))

Cos(x) – Cos(y) = –2.Sin(½(x + y)).Sin(½(x – y))

Tan(x) - Tan(y) = Sin(x – y) / Cos(x).Cos(y)

Sin²(x) + Cos²(x) = 1

Tan(x) = (Sec²(x) – 1)½

Cot(x) = (Csc²(x) – 1)½

Sin(Acos(x)) = Cos(Asin(x)) = (1 – x²)½

Cos(Atan(x)) = 1 / (1 + x²)½

Tan(Acos(x)) = (1 – x²)½ / x                

Sin(Atan(x)) = x / (1 + x²)½

Tan(Asin(x)) = x / (1 – x²)½

Cosh(x) = ½(ex + e-x)

Cosh(x) + Sinh(x) = ex

Cosh²(x) – Sinh²(x) = 1

Sinh(x/2) = ±(½(Cosh(x)-1))½

Sinh(x) = ½(ex – e-x)

Cosh(x/2) = (½(Cosh(x)+1))½

Cosh(x) – Sinh(x) = e-x

Cosh²(x) + Sinh²(x) = Cosh(2x)

Tanh(x/2) = (Cosh(x)-1)/Sinh(x) = Sinh(x)/(Cosh(x)+1)

Tanh(x) = Sinh(x) / Cosh(x) = (ex – e-x)/(ex + e-x) = (e2x – 1)/(e2x + 1)

Csch(x) = 1/Sinh(x) = 2 / (ex – e-x)

Sech(x) = 1/Cosh(x) = 2 / (ex + e-x)

Coth(x) = (ex + e-x) / (ex – e-x)

Asinh(x) = logₑ(x + (x² + 1)½)

Acosh(x) = logₑ(x + (x² – 1)½)

Atanh(x) = ½ Logₑ((1 + x) / (1 – x))

Asinh(x/a) = logₑ((x + (x² + a²)½) / a)

Acosh(x/a) = logₑ(x + (x² – a²)½) / a)

Atanh(x/a) = ½ Logₑ((a + x) / (a – x))

3-D Trigonometric Functions and Relationships

3D Angles and Lengths

3D trigonometric functions and relationships

3D Angles and Lengths

R² = x² + y² + z²

Sin²(α) / Tan²(ψ) = 1 / Sin²(β) - 1

Direction Cosines

Direction cosines of a 3D scalar vector

Direction Cosines (l, m and n)

l = Cos(θx ) = P/x

m = Cos(θy ) = P/y

n = Cos(θz ) = P/z

Further Reading

You will find further reading on this subject in reference publications(19)

      Go to our store
CalQlata™ Copyright ©2011-2019 CalQlata info@calqlata.com Site Map Terms of website use Our Store