• Second moment of area moment of inertiaSecond area moment calculation and radius of gyration of common shapes about weak and strong axes
  • Cubic orientation of primary and shear stresses and principal stress cosine rotationCombine primary and shear stresses into equivalent and principal stresses & their cosines
  • Nucleus and electron shells of atomic elementFind, sort and reorganise the properties of nature's atomic elements with active periodic table
  • Formulas included in Engineering PrinciplesCalculate unknowns in principle engineering formulas: stress, moments, power, energy, capstans, fluids, etc.
  • Properties of a triangle with inscribed and circumscribed circlesCalculate the properties of triangles and triangular configurations including inscribed and circumscribed circles
Area Moment calculation1 Combined Stress calculation2 Elements database3 Engineering Principles calculation4 Trigonometry calculation5
Useful Stuff Algebra Trig Functions Calculus Max-Min Differentiation Rules Differentiation Trig Differentiation Logs Integration Methods Standard Integrals Stiffness & Capacity Mohr's Circle Earth's Atmosphere Earth's Properties Stars & Planets Laws of Motion Solar System Orbits Planetary Spin The Atom Brakes and Tyres Vehicle Impacts Speeding vs Safety Surface Finish Pressure Classes Hardness Conversion Thermodynamics Steam (properties) Heat Capacity Work Energy Power

Integration of Algebraic and Trigonometric Functions

The following table contains integrated examples of basic algebraic and trigonometric formulas.
Ln means natural logarithm

∫dx

x

∫xn.dx

xn+1 / (n+1)

∫axn.dx

a . xn+1 / (n+1)

∫(axn + b).dx
= ∫axn.dx + ∫b.dx

a.xn+1 / (n+1) + b.x

∫(ax + b)n.dx

(ax+b)n+1 / a(n+1)

∫dx / (ax + b)
= 1/a . ∫a.dx / (ax + b)

1/a . Ln(ax+b)

∫1/x . dx

Ln(x)

∫1/(x + b)½ . dx

2(x+b)½

∫1/(ax + b)½ . dx

2(ax+b)½ / a

∫1/(x² - a²) . dx

-Acoth(x/a) / a
or
Ln[(x-a)/(x+a)] / 2a

∫1/(a² - x²) . dx

Atanh(x/a) / a
or
Ln[(a+x)/(a-x)] / 2a

∫1/(a² + x²) . dx

Atan(x/a) / a

∫(x² + a²)½ . dx

½x(x² + a²)½ + ½a² . Asinh(x/a)
or
½x(x² + a²)½ + ½a² . Ln([x+(x² + a²)½] / a)

∫ƒ'(x)/ƒ(x) . dx = Ln(ƒ(x))

Note: If the numerator = the differential of the denominator then the inverse of the denominator is the logₑ of the denominator.
So multiply the equation by the differential of the denominator and 'Logₑ' the result

d(u.v) / dx

u.v = ∫u.dv/dx.dx +∫v.du/dx.dx = ∫u.dv +∫v.du
∫u.dv = u.v - ∫v.du

∫ax . dx

ax . loga(e)

∫ex . dx

ex

∫Sin(x) . dx

–Cos(x)

∫Cos(x) . dx

Sin(x)

∫Tan(x) . dx

–Ln(Cos(x)), or
Ln(Sec(x))

∫Cot(x) . dx

Ln(Sin(x))

∫Sec(x) . dx

Ln(Tan(¼π + ½x))

∫Cosec(x) . dx

Ln(Tan(½x))

∫Sinh(x) . dx

Cosh(x)

∫Cosh(x) . dx

Sinh(x)

∫Tanh(x) . dx

Ln(Cosh(x))

∫Coth(x) . dx

Ln(Sinh(x))

∫Sin(ax) . dx

–Cos(ax) / a

∫Sin(ax + b) . dx

–Cos(ax + b) / a

∫Cos(ax) . dx

Sin(ax) / a

∫Cos(ax + b) . dx

Sin(ax + b) / a

∫Tan(ax) . dx

Ln(Sec(ax)) / a

∫Sinh(ax) . dx

Cosh(ax) / a

∫Cosh(ax) . dx

Sinh(ax) / a

∫Sin(x).Cos(x) . dx

-¼Cos(2x)

∫Sec(x).Tan(x) . dx

Sec(x)

∫Csc(x).Cot(x) . dx

–Csc(x)

∫1 / (a² – x²)½ . dx

Asin(x/a), or
–Acos(x/a)

∫1 / (a² + x²) . dx

Asec(x/a) / a, or
–Acsc(x/a) / a

∫1 / x(x² – a²)½ . dx

Asec(x/a) / a, or
–Acsc(x/a) / a

∫1 / (x² + a²)½ . dx

Asinh(x/a), or
Ln(x+(x²+a²)½ / a)

∫1 / (x² – a²)½ . dx

Acosh(x/a), or
Ln(x+(x²–a²)½ / a)

∫1 / (a² – x²) . dx

Atanh(x/a) / a, or
Ln((a+x)/(a–x)) / 2a

∫1 / (x² – a²) . dx

–Acoth(x/a) / a, or
Ln((a–x)/(a+x)) / 2a

∫1 / x(a² – x²)½ . dx

–Asech(x/a) / a, or
–Ln((a + (a²–x²)½) / x) / a

∫1 / x(a² + x²)½ . dx

–Acsch(x/a) / a, or
–Ln((a + (a²+x²)½) / x) / a

∫Sin²(x) . dx

½(x – ½.Sin(2x))

∫Cos²(x) . dx

½(x + ½.Sin(2x))

∫Tan²(x) . dx

Tan(x) – x

∫Csc²(x) .dx

–Cot(x)

∫Sec²(x) . dx

Tan(x)

∫Cot²(x) . dx

–(Cot(x) + x)

∫(x² – a²)½ .dx

½.x(x²–a²)½ – a².Acosh(x/a)/2, or
½.x(x²–a²)½ – a²(logₑ((x+(x²–a²)½ / a) / 2

∫(x² + a²)½ .dx

½.x(x²+a²)½ + a².Asinh(x/a)/2, or
½x(x²+a²)½ + a²(logₑ((x+(x²+a²)½ / a) / 2

∫(a² – x²)½ .dx

½.a².Asin(x/a) + ½.x(a² – x²)½

∫Sin²(ax)

½x – ¼Sin(2ax)/a

∫x.Sin(ax).dx

Sin(ax)/a² – x.Cos(ax)/a

∫x².Sin(ax)

-x².Cos(ax)/a + 2.x.Sin(ax)/a² + 2Cos(ax)/a³

∫x².Sin²(ax)

x³/6 – ¼.x².Sin(2ax)/a – ¼x.Cos(2ax)/a² + ⅛Sin(2ax)/a³

∫x³.Sin(ax)

-x³.Cos(ax)/a + 3x².Sin(ax)/a² + 6.x.Cos(ax)/a³ – 6.Sin(ax)/a⁴

∫Cos²(ax)

¼Sin(2ax)/a + ½x

∫x.Cos(ax).dx

x.Sin(ax)/a + Cos(ax)/a²

∫x².Cos(ax)

x².Sin(ax)/a + 2.x.Cos(ax)/a² – 2.Sin(ax)/a³

∫x².Cos²(ax)

¼.x².Sin(2ax)/a + x³/6 + x.Cos(2ax) / 4a² – ⅛Sin(2ax)/a³

∫x³.Cos(ax)

x³.Sin(ax)/a + 3x².Cos(ax)/a² – 6.x.Sin(ax)/a³ – 6.Cos(ax)/a⁴

∫Sin(x).Cos(x)

-¼.Cos(2x)

Worked Examples

The following table contains a number of examples worked through by CalQlata engineers from time to time.
The table may not yet be complete but will be eventually. We are adding new integral workings as we resolve them.

Note: there are a number of different ways to integrate these formulas, we have simply listed the methods we have used.

Typical Integration by Substitution:
Problem: ∫(a + b.x²)⁰˙⁵ . dx

set: m = √a; n = √b; x = m/n . Tan(θ)     {i.e. θ = Atan[x.n/m]}
note: Sec²(θ) = 1+Tan²(θ)

∫(m² + n².x²)⁰˙⁵ . dx
     = ∫(m² + .m²/ . Tan²[θ])⁰˙⁵ . dθ
     = ∫(m² + m² . Tan²[θ])⁰˙⁵ . dθ
     = ∫(m².(1 + Tan²[θ]))⁰˙⁵ . dθ
     = ∫(m².Sec²[θ])⁰˙⁵ . dθ
     = ∫m.Sec[θ] . dθ
     = m∫Sec[θ] . dθ
     = m . Ln(Tan[¼π + ½θ])     {see ∫Sec[x].dx above}

substitute back:
for x: m . Ln(Tan[¼π + ½{Atan[x.n/m]}])
for a & b: √a . Ln(Tan[¼π + ½{Atan[x.√b/√a]}])

∫(a + b.x²)⁰˙⁵ . dx = √a . Ln(Tan[¼π + ½.Atan[x.√(b/a)]])

∫Sin²(x).dx

Sin²(x) = Sin(x).Sin(x)
     = ½(Cos(x–x) – Cos(x+x))
     = ½(Cos(0) – Cos(2x))
     = ½(1 – Cos(2x))
     = ½ – ½Cos(2x)

∫Sin²(x) = ∫(½ – ½Cos(2x)).dx
     = ∫½.dx – ∫½Cos(2x).dx
     = ½∫dx – ½∫Cos(2x).dx
     = ½.x – ½.Sin(2x)/2
∫Sin²(x) = ½x – ¼Sin(2x)

∫Sin²(ax).dx

Sin²(ax) = Sin(ax).Sin(ax)
     = ½(Cos(ax–ax) – Cos(ax+ax))
     = ½(Cos(0) – Cos(2ax))
     = ½(1 – Cos(2ax))
     = ½ – ½Cos(2ax)

∫Sin²(ax) = ∫(½ – ½Cos(ax)).dx
     = ∫½.dx – ∫½Cos(2ax).dx
     = ½∫dx – ½∫Cos(2ax).dx
     = ½x – ½Sin(2ax)/2a
∫Sin²(ax) = ½x – ¼Sin(2ax)/a

∫x.Sin(ax).dx
(using integration by parts: ∫u.dv = uv - ∫v.du)
u = x; dv = Sin(ax); du = dx; v = -Cos(ax)/a

∫x.Sin(ax).dx = x.-Cos(ax)/a – ∫-Cos(ax)/a.dx
     = -x.Cos(ax)/a + 1/a∫Cos(ax).dx
     = -x.Cos(ax)/a + 1/a.Sin(ax)/a
     = -x.Cos(ax)/a + Sin(ax)/a²
∫x.Sin(ax).dx = Sin(ax)/a² – x.Cos(ax)/a

∫x².Sin(ax)
(using integration by parts: ∫u.dv = uv - ∫v.du)
u = x²; dv = Sin(ax); du = 2x.dx; v = -Cos(ax)/a

∫x².Sin(ax) = x².-Cos(ax)/a - ∫-Cos(ax)/a . 2x.dx
∫x².Sin(ax) = -x².Cos(ax)/a + 2/a∫x.Cos(ax).dx

∫x.Cos(ax).dx
u = x; dv = Cos(ax); du =dx; v = Sin(ax)/a
∫x.Cos(ax).dx = x . Sin(ax)/a – ∫Sin(ax)/a . dx
     = x . Sin(ax)/a – 1/a∫Sin(ax).dx
     = x . Sin(ax)/a – 1/a-Cos(ax)/a.dx
     = x.Sin(ax)/a + Cos(ax)/a/a
∫x.Cos(ax).dx = x.Sin(ax)/a + Cos(ax)/a²

∫x².Sin(ax) = -x².Cos(ax)/a + 2/a . (x.Sin(ax)/a + Cos(ax)/a²)
     = -x².Cos(ax)/a + (2/a . x.Sin(ax)/a + 2/a . Cos(ax)/a²)
     = -x².Cos(ax)/a + (2x.Sin(ax)/a² + 2Cos(ax)/a³)
∫x².Sin(ax) = 2Cos(ax)/a³ + 2x.Sin(ax)/a² – x².Cos(ax)/a

∫x².Sin²(ax)

Sin²(ax) = Sin(ax).Sin(ax)
     = ½(Cos(ax–ax) – Cos(ax+ax))
     = ½(Cos(0) – Cos(2ax))
     = ½(1 – Cos(2ax))
Sin²(ax) = ½ – ½Cos(2ax)

(using integration by parts: ∫u.dv = uv - ∫v.du)
u = x²; dv = ½ – ½Cos(2ax); du = 2x.dx; v = ½x – ¼Sin(2ax)/a
∫x².Sin²(ax) = x².(½x – ¼.Sin(2ax)/a) – ∫(½x – ¼.Sin(2ax)/a) . 2x.dx
     = ½x³ – ¼.x².Sin(2ax)/a – ∫(x² – ½.x.Sin(2ax)/a).dx
     = ½x³ – ¼.x².Sin(2ax)/a – ∫x².dx + ∫½.x.Sin(2ax)/a.dx
     = ½x³ – ¼.x².Sin(2ax)/a – ∫x².dx + 1 / 2a∫x.Sin(2ax).dx
     = ½x³ – ¼.x².Sin(2ax)/a – ⅓x³ + 1 / 2a∫x.Sin(2ax).dx
∫x².Sin²(ax) = x³/6 – ¼.x².Sin(2ax)/a + 1 / 2a∫x.Sin(2ax).dx

∫x.Sin(2ax).dx
u = x; dv = Sin(2ax); du = dx; v = -Cos(2ax)/2a
∫x.Sin(2ax).dx = -x.Cos(2ax) / 2a – ∫-Cos(2ax) / 2a . dx
     = -x.Cos(2ax) / 2a + 1 / 2a∫Cos(2ax) . dx
     = -x.Cos(2ax) / 2a + 1 / 2a.Sin(2ax) / 2a
∫x.Sin(2ax).dx = -x.Cos(2ax) / 2a + Sin(2ax) / 4a²

∫x².Sin²(ax) = x³/6 – ¼.x².Sin(2ax)/a + 1 / 2a . (-x.Cos(2ax) / 2a + Sin(2ax) / 4a²)
     = x³/6 – ¼.x².Sin(2ax)/a + (-x.Cos(2ax) / 4a² + ⅛Sin(2ax)/a³)
∫x².Sin²(ax) = x³/6 – ¼.x².Sin(2ax)/a – ¼x.Cos(2ax)/a² + ⅛Sin(2ax)/a³

∫x³.Sin(ax)
(using integration by parts: ∫u.dv = uv - ∫v.du)
u = x³; dv = Sin(ax); du = 3.x².dx; v = -Cos(ax)/a
∫x³.Sin(ax) = x³.-Cos(ax)/a – ∫-Cos(ax)/a . 3x².dx
∫x³.Sin(ax) = -x³.Cos(ax)/a + 3/a∫x².Cos(ax).dx

∫x².Cos(ax).dx
u = x²; dv = Cos(ax); du =2x.dx; v = Sin(ax)/a
∫x².Cos(ax).dx = x².Sin(ax)/a – ∫Sin(ax)/a . 2x.dx
     = x².Sin(ax)/a – 2/a∫Sin(ax) . x.dx
∫x².Cos(ax).dx = x².Sin(ax)/a – 2/a∫x.Sin(ax).dx

∫x.Sin(ax).dx
u = x; dv = Sin(ax); du =dx; v = -Cos(ax)/a
∫x.Sin(ax).dx = x . -Cos(ax)/a – ∫-Cos(ax)/a . dx
     = -x.Cos(ax)/a + 1/a∫Cos(ax).dx
     = -x.Cos(ax)/a + Sin(ax)/a/a
∫x.Sin(ax).dx = -x.Cos(ax)/a + Sin(ax)/a²

∫x².Cos(ax).dx = x².Sin(ax)/a – 2/a . (-x.Cos(ax)/a + Sin(ax)/a²)
     = x².Sin(ax)/a – (2/a.-x.Cos(ax)/a + 2/aSin(ax)/a²)
     = x².Sin(ax)/a – (2.-x.Cos(ax)/a² + 2.Sin(ax)/a³)
∫x².Cos(ax).dx = x².Sin(ax)/a + 2.x.Cos(ax)/a² – 2.Sin(ax)/a³

∫x³.Sin(ax) = -x³.Cos(ax)/a + 3/a . (x².Sin(ax)/a + 2.x.Cos(ax)/a² – 2.Sin(ax)/a³)
     = -x³.Cos(ax)/a + (3/a . x².Sin(ax)/a + 3/a . 2.x.Cos(ax)/a² – 3/a . 2.Sin(ax)/a³)
     = -x³.Cos(ax)/a + (3x².Sin(ax)/a² + 6.x.Cos(ax)/a³ – 6.Sin(ax)/a⁴)
∫x³.Sin(ax) = -x³.Cos(ax)/a + 3x².Sin(ax)/a² + 6.x.Cos(ax)/a³ – 6.Sin(ax)/a⁴

∫Cos²(x).dx

Cos²(x) = Cos(x).Cos(x)
     = ½(Cos(x+x) + Cos(x-x))
     = ½(Cos(2x) + Cos(0))
     = ½(Cos(2x) + 1)
     = ½Cos(2x) + ½

∫Cos²(x) = ∫(½Cos(2x) + ½).dx
     = ∫½Cos(2x).dx + ∫½.dx
     = ½∫Cos(2x).dx + ½∫dx
     = ½.Sin(2x)/2 + ½.x
∫Cos²(x) = ¼Sin(2x) + ½x

∫Cos²(ax).dx

Cos²(ax) = Cos(ax).Cos(ax)
     = ½(Cos(ax+ax) + Cos(ax-ax))
     = ½(Cos(2ax) + Cos(0))
     = ½(Cos(2ax) + 1)
     = ½Cos(2ax) + ½

∫Cos²(ax) = ∫(½Cos(ax) + ½).dx
     = ∫½Cos(2ax).dx + ∫½.dx
     = ½∫Cos(2ax).dx + ½∫dx
     = ½Sin(2ax)/2a + ½x
∫Cos²(ax) = ¼Sin(2ax)/a + ½x

∫x.Cos(ax).dx
(using integration by parts: ∫u.dv = uv - ∫v.du)
u = x; dv = Cos(ax); du = dx; v = Sin(ax)/a

∫x.Cos(ax).dx = x.Sin(ax)/a – ∫Sin(ax)/a.dx
     = x.Sin(ax)/a – 1/a∫Sin(ax).dx
     = x.Sin(ax)/a – 1/a.-Cos(ax)/a
     = x.Sin(ax)/a + Cos(ax)/a²
∫x.Cos(ax).dx = x.Sin(ax)/a + Cos(ax)/a²

∫x².Cos(ax)
(using integration by parts: ∫u.dv = uv - ∫v.du)
u = x²; dv = Cos(ax); du =2x.dx; v = Sin(ax)/a
∫x².Cos(ax) = x².Sin(ax)/a – ∫Sin(ax)/a . 2x.dx
∫x².Cos(ax) = x².Sin(ax)/a – 2/a∫x.Sin(ax).dx

∫x.Sin(ax).dx
u = x; dv = Sin(ax); du =dx; v = -Cos(ax)/a
     = x . -Cos(ax)/a – ∫-Cos(ax)/a . dx
     = -x.Cos(ax)/a + 1/a∫Cos(ax).dx
     = -x.Cos(ax)/a + 1/a.Sin(ax)/a
∫x.Sin(ax).dx = -x.Cos(ax)/a + Sin(ax)/a²

∫x².Cos(ax) = x².Sin(ax)/a – 2/a . (-x.Cos(ax)/a + Sin(ax)/a²)
     = x².Sin(ax)/a – (2/a.-x.Cos(ax)/a + 2/a.Sin(ax)/a²)
     = x².Sin(ax)/a – (2.-x.Cos(ax)/a² + 2.Sin(ax)/a³)
∫x².Cos(ax) = x².Sin(ax)/a + 2.x.Cos(ax)/a² – 2.Sin(ax)/a³

∫x².Cos²(ax)

Cos²(ax) = Cos(ax).Cos(ax)
     = ½(Cos(ax+ax) + Cos(ax-ax))
     = ½(Cos(2ax) + Cos(0))
     = ½(Cos(2ax) + 1)
Cos²(ax) = ½Cos(2ax) + ½

(using integration by parts: ∫u.dv = uv - ∫v.du)
u = x²; dv = ½Cos(2ax) + ½; du = 2x.dx; v = ¼Sin(2ax)/a + ½x
∫x².Cos²(ax) = x².(¼.Sin(2ax)/a + ½x) – ∫(¼Sin(2ax)/a + ½x) . 2x.dx
     = ¼.x².Sin(2ax)/a + ½x³ – ∫(½.x.Sin(2ax)/a + x²).dx
     = ¼.x².Sin(2ax)/a + ½x³ – ∫½.x.Sin(2ax)/a.dx – ∫x².dx
     = ¼.x².Sin(2ax)/a + ½x³ – ∫x².dx – 1 / 2a∫x.Sin(2ax).dx
     = ¼.x².Sin(2ax)/a + ½x³ – ⅓x³ – 1 / 2a∫x.Sin(2ax).dx
∫x².Cos²(ax) = ¼.x².Sin(2ax)/a + x³/6 – 1 / 2a∫x.Sin(2ax).dx

∫x.Sin(2ax).dx
u = x; dv = Sin(2ax); du = dx; v = -Cos(2ax) / 2a
∫x.Sin(2ax).dx = -x.Cos(2ax) / 2a - ∫-Cos(2ax) / 2a . dx
     = -x.Cos(2ax) / 2a + 1 / 2a∫Cos(2ax) . dx
     = -x.Cos(2ax) / 2a + 1 / 2a.Sin(2ax) / 2a . dx
∫x.Sin(2ax).dx = -x.Cos(2ax) / 2a + Sin(2ax) / 4a²

∫x².Cos²(ax) = ¼.x².Sin(2ax)/a + x³/6 – 1 / 2a . (-x.Cos(2ax) / 2a + Sin(2ax) / 4a²)
     = ¼.x².Sin(2ax)/a + x³/6 – (-x.Cos(2ax) / 4a² + Sin(2ax) / 8a³)
∫x².Cos²(ax) = ¼.x².Sin(2ax)/a + x³/6 + x.Cos(2ax) / 4a² – ⅛Sin(2ax)/a³

∫x³.Cos(ax)
(using integration by parts: ∫u.dv = uv - ∫v.du)
u = x³; dv = Cos(ax); du =3x².dx; v = Sin(ax)/a
∫x³.Cos(ax) = x³.Sin(ax)/a – ∫Sin(ax)/a . 3x².dx
∫x³.Cos(ax) = x³.Sin(ax)/a – 3/a∫x².Sin(ax).dx

∫x².Sin(ax).dx
u = x²; dv = Sin(ax); du =2x.dx; v = -Cos(ax)/a
∫x².Sin(ax).dx = x².-Cos(ax)/a – ∫-Cos(ax)/a . 2x.dx
     = -x².Cos(ax)/a + 2/a∫Cos(ax) . x.dx
∫x².Sin(ax).dx = -x².Cos(ax)/a + 2/a∫x.Cos(ax).dx

∫x.Cos(ax).dx
u = x; dv = Cos(ax); du =dx; v = Sin(ax)/a
∫x.Cos(ax).dx = x . Sin(ax)/a – ∫Sin(ax)/a . dx
     = x . Sin(ax)/a – 1/a∫Sin(ax).dx
     = x.Sin(ax)/a + Cos(ax)/a/a
∫x.Cos(ax).dx = x.Sin(ax)/a + Cos(ax)/a²

∫x².Sin(ax).dx = -x².Cos(ax)/a + 2/a . (x.Sin(ax)/a + Cos(ax)/a²)
     = -x².Cos(ax)/a + (2/a . x.Sin(ax)/a + 2/a . Cos(ax)/a²)
     = -x².Cos(ax)/a + (2.x.Sin(ax)/a² + 2.Cos(ax)/a³)
∫x².Sin(ax).dx = -x².Cos(ax)/a + 2.x.Sin(ax)/a² + 2.Cos(ax)/a³

∫x³.Cos(ax) = x³.Sin(ax)/a – 3/a . (-x².Cos(ax)/a + 2.x.Sin(ax)/a² + 2.Cos(ax)/a³)
     = x³.Sin(ax)/a – (3/a . -x².Cos(ax)/a + 3/a . 2.x.Sin(ax)/a² + 3/a . 2.Cos(ax)/a³)
     = x³.Sin(ax)/a – (-3x².Cos(ax)/a² + 6.x.Sin(ax)/a³ + 6.Cos(ax)/a⁴)
∫x³.Cos(ax) = x³.Sin(ax)/a + 3x².Cos(ax)/a² – 6.x.Sin(ax)/a³ – 6.Cos(ax)/a⁴

∫Sin(x).Cos(x).dx

Sin(x).Cos(x) = ½(Sin(x+x) + Sin(x-x))
     = ½(Sin(2x) + Sin(0))
     = ½(Sin(2x) + 0)
     = ½Sin(2x)

∫Sin(x).Cos(x) = ∫½Sin(2x).dx
     = ½∫Sin(2x).dx
     = ½.-Cos(2x)/2
∫Sin(x).Cos(x) = -¼.Cos(2x)

∫Tan²(x).dx

Tan²(x) = Sec²(x) – 1

∫Tan²(x) = ∫(Sec²(x) – 1).dx
     = ∫Sec²(x).dx – ∫dx
∫Tan²(x) = Tan(x) – x

Colour Coding is provided in the above table to assist with the flow/sequencing of some of the more complex calculations.

Further Reading

You will find further reading on this subject in reference publications(19)

      Go to our store
CalQlata™ Copyright ©2011-2016 CalQlata info@calqlata.com Site Map Terms of website use Shortcut to CalQlata's Facebook page